

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 282 (2008) 80-84

www.elsevier.com/locate/molcata

Hydrogenation of *o*-chloronitrobenzene to *o*-chloroaniline over Pd/C in supercritical carbon dioxide

Chunyu Xi^a, Haiyang Cheng^{a,b}, Jianmin Hao^{a,b}, Shuxia Cai^a, Fengyu Zhao^{a,*}

 ^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
^b Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China

Received 27 August 2007; received in revised form 26 November 2007; accepted 29 November 2007 Available online 4 December 2007

Abstract

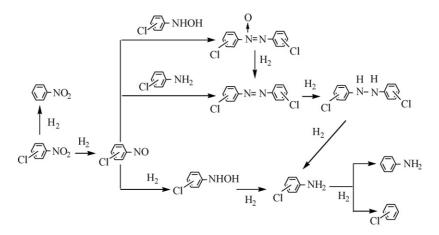
Hydrogenation of *o*-chloronitrobenzene (*o*-CNB) to *o*-chloroaniline (*o*-CAN) with Pd/C has been investigated in supercritical carbon dioxide (scCO₂) at 308 K. The influences of several parameters such as CO₂, H₂ pressures, Pd metal particle size and reaction time have been discussed. CO₂ pressure presented markedly effects on the reaction rate and product selectivity under the reaction conditions used, the selectivity to *o*-CAN at CO₂ pressure from 8 to 13 MPa (supercritical region) was larger than that at CO₂ pressure below 6 MPa (subcritical region). Moreover, the larger selectivity to *o*-CAN was obtained in scCO₂ compared with that in ethanol.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Hydrogenation; o-Chloronitrobenzene; Supercritical carbon dioxide; Pd/C

1. Introduction

Chloroaniline (CAN) as an important chemical intermediate is widely applied in the manufacture of polyurethanes, rubber, pesticides and drugs. It is generally prepared from the hydrogenation of chloronitrobenzene (CNB) (Scheme 1), but in this process the dechlorination usually occurs and results in the formation of aniline. Thus, the hydrogenation of CNB to CAN with high selectivity is still a challenge up to now. Recently, many studies have been devoted to prevent the hydrodechlorination of CAN, such as introducing suitable modifier (promoters, inhibitors), adjusting the properties of the catalyst (alloying, controlling the metal particle dispersion and metal-support interaction) and selecting appropriate reaction conditions (temperature, solvent, etc.) [1–11]. It was reported that Pt/γ -Fe₂O₃ was effective for hydrogenation of chloronitrobenzene and bromonitrobenzene with high selectivity to the chloroaniline and bromoaniline [10,11]. Supercritical carbon dioxide (scCO₂) is an environmentally acceptable replacement to the harmful conventional organic solvents for chemical reactions due to its non-toxic, non-flammable, moderate critical parameter and


1381-1169/\$ – see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2007.11.027 potentially easy separation [12–14]. Furthermore, $scCO_2$ affords some potential advantages: the complete miscibility with hydrogen, high diffusivity, good mass and thermal transport properties. Thus, it has been attracting much attention in the selective hydrogenations [15–18]. In the present work, the hydrogenation of *o*-CNB to *o*-CAN in $scCO_2$ has been studied at a low temperature of 308 K over Pd/C catalyst due to it is cheaper compared to Pt catalysts. The influence of several parameters such as CO_2 pressure, phase behavior, reaction time and H₂ pressure have been discussed and the performance of the hydrogenation in $scCO_2$ has been compared with that in the conventional organic solvent of ethanol.

2. Experimental

2.1. Hydrogenation of o-chloronitrobenzene

The hydrogenation of o-CNB was carried out in a 50 ml Teflon-lined high-pressure stainless steel batch reactor. A certain amount of 5 wt% Pd/C (0.01 g) and o-CNB (0.254 mmol/ml) were loaded into the reactor. Then the reactor was sealed and flushed three times with 2 MPa CO₂ to remove the air. After flushing, the reactor was heated up to 308 K. A prescribed amount of H₂ was introduced and then liquid CO₂

^{*} Corresponding author. Tel.: +86 431 85262410; fax: +86 431 85262410. *E-mail address:* zhaofy@ciac.jl.cn (F. Zhao).

Scheme 1. Reaction pathways of the hydrogenation of chloronitrobenzene.

was compressed into the reactor using a high-pressure liquid pump to the desired pressure. The reaction mixture was stirred continuously with a magnetic stirrer for a certain time. After reaction, the liquid product was separated from the catalyst through filtration and analyzed with a gas chromatograph (GC-Shimadzu-14C, FID, Capillary column, Rtx-Wax $30 \text{ m} \times 0.53 \text{ mm} \times 0.25 \text{ m}$) and identified by gas chromatography/mass spectrometry (GC/MS, Agilent 5890).

2.2. Catalyst characterization

The 5 wt% Pd/C catalyst (Wako) was used without or with heat treatment at different temperatures for 4 h under H₂ gas atmosphere before used. The palladium crystalline grain was estimated by XRD pattern recorded on Rigaku SLX-2000. The average size of the Pd crystalline grain was calculated by the Debye–Scherer formula $t=0.89\lambda/(\beta\cos\theta)$, where t is the average diameter of the particles, λ is the X-ray wavelength (1.5418 Å), θ is the Bragg diffraction angle (half of the measured diffraction angle) and β is the peak width in radians at half-height.

2.3. Phase behavior and high pressure

The observation of the phase state of o-CNB in CO₂ was carried out in an 85 ml high-pressure view cell. The operating procedure is as same as our previous work described [19]. A certain amount of o-CNB (0.254 mmol/ml) was added and the reactor was heated up to 308 K, then H₂ (4 MPa) and CO₂ were introduced into the reactor to the required pressure. At each pressure the mixture was stirred for several minutes, and then the stirring was stopped and the phase behavior was observed by the naked eye from the windows.

3. Results and discussion

3.1. Influence of CO_2 and H_2 pressures

Table 1 shows the results of the product distribution of hydrogenation of o-CNB at different pressures of CO₂. Under the reaction conditions used, all the reactions were run until *o*-CNB was converted completely according to the hydrogen consumption. The results indicate that the yield of *o*-CAN reached 94% in the presence of 10 MPa CO₂, it was 10% higher than that in ethanol under the reaction conditions. The variation of the CO₂ pressure exhibited a large impact on the reaction rate and product distribution, the yield to *o*-CAN was 82% in the absence of solvent or at a lower CO₂ pressure of 6 MPa (subcritical region), while it increased up to 93% at CO₂ pressures above 8 MPa (supercritical region). The yield to *o*-CAN changed very slightly at a pressure range of 8–13 MPa. When CO₂ pressure was raised up to 14 MPa or higher, both the yield to *o*-CAN and reaction rate decreased. These results may be explained with the phase behavior and the properties of CO₂, as discussed below.

Fig. 1 shows the influence of CO_2 pressure on the yield of *o*-CAN at the different H₂ pressures. The yield of *o*-CAN increased with increasing of CO₂ pressure at the complete conversion of *o*-CNB, and it increased largely at CO₂ pressure above 8 MPa irrespective to the H₂ pressures checked. The yield to *o*-CAN was low at the higher H₂ pressure, suggesting that high H₂ pressure was favorable to the dehalogenation of *o*-CAN to AN.

The phase behavior is important for understanding whether the reaction occurs homogeneously or heterogeneously, and it

Table 1
Results of o-CNB hydrogenation over Pd/C catalyst at 308 K

Solvent	Time (min)	Yield ^a (%)			Phase state		
		CAN	AN	Others			
6 MPa CO ₂	120	82	17	1	3		
8 MPa CO ₂	90	93	6	1	3		
10 MPa CO ₂	90	94	5	1	3		
12 MPa CO ₂	90	92	7	1	3		
13 Mpa CO ₂	90	93	5	2	2		
14 MPa CO ₂	120	87	10	3	2		
16 MPa CO ₂	180	83	13	4	2		
-	150	82	17	1	3		
Ethanol	75	84	12	4	3		

Reaction conditions: o-CNB 12.7 mmol; catalyst 5% Pd/C (without heat treatment) 0.01 g; H₂ 4 MPa; temperature 308 K; in the case of organic solvent, ethanol 5 ml.

^a At the conversion of o-CNB just reaching 100%.

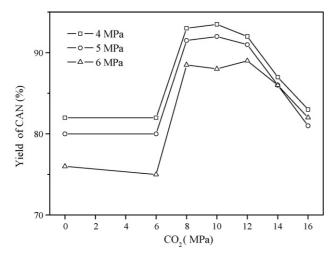


Fig. 1. Influence of CO₂ pressure on the yield of *o*-CAN at the different H_2 pressures at 308 K. Reaction conditions: *o*-CNB12.7 mmol; catalyst 5%Pd/C 0.01 g (without heat treatment). All the values of *o*-CAN yield were at 100% conversion of *o*-CNB.

was observed with visual inspection at 308 K under a CO₂ pressure range of 0-16 MPa and 4 MPa H₂. The results are given in Table 1. At CO₂ pressures lower than 6 MPa, three phases of gas (CO2 + H2), liquid (o-CNB) and solid (catalyst) presented in the reaction mixture. A certain amount of o-CNB dissolved into the CO₂ phase with increasing of CO₂ pressure, and the reaction mixture changed to CO₂ fluid (CO₂, H₂, dissolved o-CNB), liquid (o-CNB, dissolved CO2 and H2) and solid (catalyst) phases at a range of CO₂ pressures from 8 to 12 MPa. When CO₂ pressure was raised up to 13 MPa, the liquid phase o-CNB disappeared and the reaction system contained two phases of CO₂-riched fluid phase (CO₂, H₂, dissolved o-CNB) and solid phase (catalyst). When a larger amount of CO₂ was introduced (at 14 MPa CO₂ or above), the mole ratio of o-CNB in reaction mixture decreased and led to decrease in reaction rate and the yield of o-CAN, which is in agreement with the literature that the higher concentration of o-CNB is favorable to the selective hydrogenation of o-CNB to CAN [5].

It was suggested that molecular interaction existed between the reactant and CO_2 molecules and which affected the reaction rate and product distribution in the hydrogenations [20–23]. Chen et al. reported that the hydrogenation of *p*-CNB was favorable in CO₂-expanded methanol due to the enhancement in hydrogen solubility and mass transfer [24]. Ichikawa et al. suggested that CO generated from CO₂ hydrogenation could act as a modifier for Pt/C catalyst to block the active sites for dechlorination in scCO₂ [25]. However, in the present work CO was not detected with GC–MS using either TCD or FID detector. Therefore, besides the influence of CO, some other factors should be considered such as molecular interactions among the substrate, catalyst and CO₂ molecules, this will be discussed in our further works.

3.2. Influence of reaction time

The total conversion and selectivity to *o*-CAN at different reaction time are listed in Table 2. The results showed that the

Solvent	Time (min)	Conversion (%)	Selectivity (%)			
			CAN	AN	Others	
Ethanol	40	56	89	9	2	
	50	68	88	10	2	
	60	90	86	10	4	
	75	100	84	12	4	
	90	100	79	16	5	
6 MPa CO ₂	80	58	97	2	1	
	90	78	94	5	1	
	105	88	88	11	1	
	120	100	82	17	1	
	135	100	78	19	3	
8 MPa CO ₂	65	60	96	3	1	
	70	80	94	5	1	
	75	84	94	5	1	
	90	100	93	6	1	
	105	100	91	8	1	
10 MPa CO ₂	65	64	97	2	1	
	70	78	96	3	1	
	75	88	95	4	1	
	90	100	94	5	1	
	105	100	92	7	1	
12 MPa CO ₂	65	61	96	3	1	
	70	76	95	4	1	
	75	86	95	4	1	
	90	100	92	7	1	
	105	100	91	8	1	
14 MPa CO ₂	75	63	96	1	2	
_	90	82	93	5	2	
	105	93	89	8	3	
	120	100	87	10	3	
	135	100	84	12	4	

Reaction conditions: o-CNB 12.7 mmol; catalyst 5% Pd/C (without heat treatment) 0.01 g; H₂ 4 MPa; temperature 308 K; in the case of organic solvent, ethanol 5 ml.

conversion of *o*-CNB increased with extending reaction time, and it increased faster in ethanol than those in scCO₂. When *o*-CNB was just converted completely, the selectivity to *o*-CAN was 89% and 97% in ethanol and in 10 MPa CO₂, respectively. However, it decreased slightly with further extending the reaction time. In ethanol, the selectivity to *o*-CAN decreased 5% with extending the reaction time for extra 15 min after 100% conversion of CNB, but it decreased only about 1–2% in supercritical region with CO₂ pressures of 8–12 MPa. Fig. 2 shows the changes in selectivity to *o*-CAN along with the conversion in ethanol and in 10 MPa CO₂, the results showed that the selectivity to *o*-CAN decreased with the proceeding of reaction, and it was irrespective to the reaction medium used.

3.3. Effect of metal particle size in $scCO_2$

To investigate the effect of palladium particle size, 5 wt% Pd/C catalysts were heat-treated under hydrogen atmosphere at different temperatures for 4h. The XRD patterns of the catalysts are shown in Fig. 3, in which the diffraction peaks

Table 2 Changes of conversion and selectivity to *o*-CAN with reaction time

Table 3	
The results of hydrogenation of <i>o</i> -chloronitrobenzene with Pd/C catalysts	

Treating temperature (K)	Pd crystalline grain size ^a (nm)	Pd dispersion ^b	Reaction time	Conversion (%)	Selectivity (%))	
					CAN	AN	Others	
_	17	0.053	75 min	88	94	5	1	
537 ^c	19	0.047	3 h	81	97	2	1	
937 ^c	28	0.032	24 h	85	98	1	1	

Reaction conditions: o-CNB 12.7 mmol; catalyst 5% Pd/C 0.01 g; H₂ 4 MPa; CO₂ 10 MPa; temperature 308 K.

^a Determined by Debye–Scherer formula.

^b Metal dispersion = 0.9/particle diameter (in nm) [21].

^c The duration for the heat treatment is 4 h.

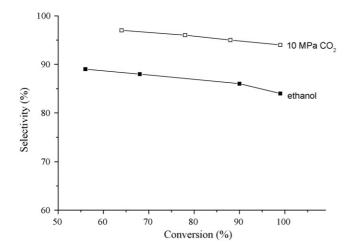


Fig. 2. Changes of the selectivity to o-CAN with conversion at 308 K. Reaction conditions: o-CNB 12.7 mmol; catalyst 5%Pd/C 0.01 g (without heat treatment); H₂ 4 MPa; in the case of organic solvent; ethanol 5 ml.

of Pd(111) and Pd(200) became to narrow and sharp with increasing heat-treating temperature, indicating that the particle size grew to larger at high temperature. The average size of Pd crystalline grain was estimated by Debye–Scherer formula and the results of the *o*-CNB hydrogenation in 10 MPa CO_2 over these Pd/C catalysts with different crystalline grain size are listed in Table 3. It showed that the selectivity to *o*-

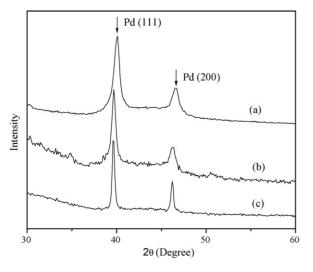


Fig. 3. X-ray diffraction patterns of Pd/C catalysts (a) without heat treatment, (b) heat-treated at 573 K and (c) at 973 K with H_2 gas for 4 h.

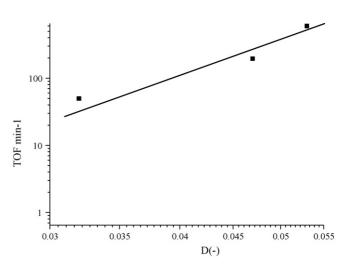


Fig. 4. Plots of TOF against the degree of metal dispersion. Reaction conditions: o-CNB 12.7 mmol; catalyst 5% Pd/C 0.01 g; H₂ 4 MPa; CO₂ 10 MPa; temperature 308 K.

CAN depended on Pd particle size and it was higher at larger dimension of Pd particle. Coq et al. [5] suggested that the adsorption of CAN was weak compared to the adsorption of CNB on the larger Pt particles, which retarded the dechlorination of CAN to AN, it is in agreement with our present results. Fig. 4 shows the diagram of average turnover frequency (TOF) against the degree of Pd dispersion at 100% conversion of CNB. The result suggests that the TOF depended on the Pd dispersion, it increased with an increase in the Pd dispersion, namely the reaction rate is larger for the catalyst with smaller Pd crystalline grain. The TOF depending on metal dispersion was also reported for the hydrogenation of nitrobenzene with Pd/C [26,27].

4. Conclusions

The hydrogenation of o-CNB over Pd/C catalyst in scCO₂ has been studied and the results showed that the introduction of scCO₂ with the proper pressure could improve the selectivity to o-CAN and the reaction rate. The selectivity to o-CAN changed very slightly with increasing CO₂ pressure at a range from 8 to 13 MPa. At CO₂ pressure higher than 12 MPa, the selectivity to o-CAN and the reaction rate decreased because of the dilution effects. Furthermore, the reaction rate and product selectivity of o-CNB hydrogenation depended on the crystalline grain size of Pd metal dispersed on the catalyst surface.

References

- P. Baumeister, Process for the production of halogenated aromatic primary amines, US Patent: 5,126,485 (1992).
- [2] B. Coq, A. Tijani, R. Dutartre, F. Figueras, J. Mol. Catal. A 79 (1993) 253.
- [3] B.J. Zuo, Y. Wang, J. Catal. 222 (2004) 493.
- [4] B. Coq, A. Tijani, F. Figueiras, J. Mol. Catal. A 71 (1992) 317.
- [5] B. Coq, A. Tijani, F. Figuéras, J. Mol. Catal. A 68 (1991) 331.
- [6] Y. Hao, Z. Li, J. Tian, J. Mol. Catal. A 265 (2007) 258.
- [7] Q. Xu, X. Liu, J. Chen, R. Li, X. Li, J. Mol. Catal. A 260 (2006) 299.
- [8] X. Wang, M. Liang, J. Zhang, Y. Wang, Curr. Org. Chem. 11 (2007) 299.
- [9] L. Xing, J. Qiu, C. Liang, C. Wang, Li. Mao, J. Catal. 250 (2007) 369.
- [10] J. Zhang, Y. Wang, H. Ji, Y. Wei, N. Wu, B. Zuo, Q. Wang, J. Catal. 229 (2005) 114.
- [11] X. Wang, M. Liang, H. Liu, Y. Wang, J. Mol. Catal. 273 (2007) 160.
- [12] A. Baiker, Chem. Rev. 99 (1999) 453.
- [13] P.G. Jessop, T. Ikariya, R. Noyori, Chem. Rev. 99 (1999) 475.

- [14] P. Licence, J. Ke, M. Sokolova, S.K. Ross, M. Poliakoff, Green Chem. 5 (2003) 99.
- [15] S. Fujita, S. Akihara, F. Zhao, R. Liu, J. Catal. 236 (2005) 101.
- [16] F. Zhao, S. Fujita, J. Sun, Y. Ikushima, M. Arai, Chem. Commun. (2004) 2326.
- [17] F. Zhao, S. Fujita, S. Akihara, M. Arai, J. Phys. Chem. A 109 (2005) 4419.
- [18] F. Zhao, Y. Ikushima, M. Chatterjee, O. Sato, M. Arai, J. Supercrit. Fluids 27 (2003) 65.
- [19] R. Liu, F. Zhao, S. Fujita, M. Arai, Appl. Catal. A: Gen. 316 (2007) 127.
- [20] J.A. Hyatt, J. Org. Chem. 49 (1984) 5097.
- [21] M.R. Nelson, R.F. Brokman, J. Phys. Chem. A 102 (1998) 7860.
- [22] P. Raveendran, S.L. Wallen, J. Am. Chem. Soc. 124 (2002) 12590.
- [23] J.D. Grunwaldt, R. Wandeler, A. Baiker, Catal. Rev. Sci. Eng. 45 (2003) 1.
- [24] Y.C. Chen, C.S. Tan, J. Supercrit. Fluids 41 (2007) 272.
- [25] S. Ichikawa, M. Tada, Y. Iwasawa, T. Ikariya, Chem. Commun. (2005) 924.
- [26] G. Carturan, F. Facchin, G. Cocco, G. Navazio, G. Gubitosa, J. Catal. 82 (1983) 56.
- [27] F. Zhao, Y. Ikushima, M. Arai, J. Catal. 224 (2004) 479.